China Best Sales 2 Phase NEMA23 1n. M 2n. M 3n. M Jk57HS 57bygh Electric Stepping Motor CNC Hybrid Geared Stepper Motor with Planetary Gearbox / Brake / Encoder / Controller vacuum pump booster

Product Description

 

2 Phase NEMA23 1N.m 2N.m 3N.m Jk57HS 57BYGH Electric Stepping Motor Cnc Hybrid Geared Stepper Motor with Planetary Gearbox / Brake / Encoder / Controller

Product Description

GenHangZhou Specification
Item Specifications
Step Angle 1.8° or 0.9°
Temperature Rise 80ºCmax
Ambient Temperature -20ºC~+50ºC
Insulation Resistance 100 MΩ Min. ,500VDC
Dielectric Strength 500VAC for 1minute
Shaft Radial Play 0.02Max. (450g-load)
Shaft Axial Play 0.08Max. (450g-load)
Max. radial force 75N (20mm from the flange)
Max. axial force 15N

 

1. The magnetic steel is high grade,we usually use the SH level type.
2. The rotor is be coated,reduce burrs,working smoothly,less noise. We test the stepper motor parts step by step.
3. Stator is be test and rotor is be test before assemble.
4. After we assemble the stepper motor, we will do 1 more test for it, to make sure the quality is good.

JKONGMOTOR stepping motor is a motor that converts electrical pulse signals into corresponding angular displacements or linear displacements. This small stepper motor can be widely used in various fields, such as a 3D printer, stage lighting, laser engraving, textile machinery, medical equipment, automation equipment, etc.

1.8 Degree Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK57HS41-1006 1.8 41 1 7.1 8 0.48 6 250 150 0.47
JK57HS41-2008 1.8 41 2 1.4 1.4 0.39 8 250 150 0.47
JK57HS41-2804 1.8 41 2.8 0.7 1.4 0.55 4 250 150 0.47
JK57HS51-1006 1.8 51 1 6.6 8.2 0.72 6 300 230 0.59
JK57HS51-2008 1.8 51 2 1.8 2.7 0.9 8 300 230 0.59
JK57HS51-2804 1.8 51 2.8 0.83 2.2 1.01 4 300 230 0.59
JK57HS56-2006 1.8 56 2 1.8 2.5 0.9 6 350 280 0.68
JK57HS56-2108 1.8 56 2.1 1.8 2.5 1 8 350 280 0.68
JK57HS56-2804 1.8 56 2.8 0.9 2.5 1.2 4 350 280 0.68
JK57HS64-2804 1.8 64 2.8 0.8 2.3 1 4 400 300 0.75
JK57HS76-2804 1.8 76 2.8 1.1 3.6 1.89 4 600 440 1.1
JK57HS76-3006 1.8 76 3 1 1.6 1.35 6 600 440 1.1
JK57HS76-3008 1.8 76 3 1 1.8 1.5 8 600 440 1.1
JK57HS82-3004 1.8 82 3 1.2 4 2.1 4 1000 600 1.2
JK57HS82-4008 1.8 82 4 0.8 1.8 2 8 1000 600 1.2
JK57HS82-4204 1.8 82 4.2 0.7 2.5 2.2 4 1000 600 1.2
JK57HS100-4204 1.8 100 4.2 0.75 3 3 4 1100 700 1.3
JK57HS112-3004 1.8 112 3 1.6 7.5 3 4 1200 800 1.4
JK57HS112-4204 1.8 112 4.2 0.9 3.8 3.1 4 1200 800 1.4

0.9 Degree Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK57HM41-1006 0.9 41 1 5.7 8 3.9 6 210 120 0.45
JK57HM41-2804 0.9 41 2.8 0.7 2.2 5 4 210 120 0.45
JK57HM51-2006 0.9 51 2 1.6 2.2 7.2 6 380 280 0.68
JK57HM56-1006 0.9 56 1 7.4 17.5 9 6 400 300 0.7
JK57HM56-2006 0.9 56 2 1.8 4.5 9 6 400 300 0.7
JK57HM56-2804 0.9 56 2.8 0.9 3.3 12 4 400 300 0.7
JK57HM76-1006 0.9 76 1 8.6 23 13.5 6 680 480 1
JK57HM76-2006 0.9 76 2 3 7 13.5 6 680 480 1
JK57HM76-2804 0.9 76 2.8 1.15 5.6 18 4 680 480 1

 

3 Phase Nema 23 Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm g.cm g.cm2 Kg
JK57H3P42-5206 1.2 42 5.2 1.3 1.4 4.5 210 110 0.45
JK57H3P56-5606 1.2 56 5.6 0.7 0.7 9 400 300 0.75
JK57H3P79-5206 1.2 79 5.2 0.9 1.5 15 680 480 1.1

 

Nema 23 Round Type Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK57HY41-0406 1.8 41 0.4 30 30 2.88 6 180 57 0.54
JK57HY41-1564 1.8 41 1.56 1.8 3.6 4 4 180 57 0.54
JK57HY51-0426 1.8 51 0.42 29 36 4.97 6 350 110 0.6
JK57HY51-2804 1.8 51 2.8 0.85 2.1 6.9 4 350 110 0.6
JK57HY56-0606 1.8 56 0.6 20 32 6 6 420 135 0.65
JK57HY56-2004 1.8 56 2 3 7 8 4 420 135 0.65
JK57HY76-1506 1.8 76 1.5 3.6 6 9 6 720 200 0.95
JK57HY76-4004 1.8 76 4 0.88 2.6 14 4 720 200 0.95

 

Jkongmotor Other Hybrid Stepper Motor:

Motor series Phase No. Step angle Motor length Motor size Leads No. Holding torque
Nema 8 2 phase 1.8 degree 30~42mm 20x20mm 4 180~300g.cm
Nema 11 2 phase 1.8 degree 32~51mm 28x28mm 4 or 6 430~1200g.cm
Nema 14 2 phase 0.9 or 1.8 degree 27~42mm 35x35mm 4 1000~2000g.cm
Nema 16 2 phase 1.8 degree 20~44mm 39x39mm 4 or 6 650~2800g.cm
Nema 17 2 phase 0.9 or 1.8 degree 25~60mm 42x42mm 4 or 6 1.5~7.3kg.cm
Nema 23 2 phase 0.9 or 1.8 degree 41~112mm 57x57mm 4 or 6 or 8 0.39~3.1N.m
3 phase 1.2 degree 42~79mm 57x57mm - 0.45~1.5N.m
Nema 24 2 phase 1.8 degree 56~111mm 60x60mm 8 1.17~4.5N.m
Nema 34 2 phase 1.8 degree 67~155mm 86x86mm 4 or 8 3.4~12.2N.m
3 phase 1.2 degree 65~150mm 86x86mm - 2~7N.m
Nema 42 2 phase 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 phase 1.2 degree 134~285mm 110x110mm - 8~25N.m
Nema 52 2 phase 1.8 degree 173~285mm 130x130mm 4 13.3~22.5N.m
3 phase 1.2 degree 173~285mm 130x130mm - 13.3~22.5N.m
Above only for representative products, products of special request can be made according to the customer request.

 

Detailed Photos

                                       Brushless Dc Motor Kit                                                                      Stepper Motor with Encoder

                   Linear Stepper Motor                              3 4 Axis Stepper Motor Kits                       Hollow Shaft Stepper Motor

 

                        Bldc Motor                                              Brushed Dc Motor                                      Hybrid Stepper Motor                                   

 

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome 'OEM' & 'ODM' cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

 

Application: CNC Milling Machine
Speed: Low Speed
Number of Stator: Two-Phase
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

3 phase motor

How do 3-phase motors differ from single-phase motors?

3-phase motors and single-phase motors differ in several aspects, including their power supply, construction, performance characteristics, and applications. Here's a detailed explanation of the differences between 3-phase motors and single-phase motors:

  • Power Supply: The primary difference between 3-phase motors and single-phase motors is their power supply. 3-phase motors require a three-phase power supply, which consists of three alternating current (AC) voltage waveforms that are 120 degrees out of phase with each other. In contrast, single-phase motors operate on a single-phase power supply, which consists of a single AC voltage waveform.
  • Construction: The construction of 3-phase motors and single-phase motors also differs. 3-phase motors have three sets of windings evenly spaced around the motor's stator, whereas single-phase motors typically have only one set of windings. The multiple windings in 3-phase motors enable the creation of a rotating magnetic field, which is essential for their operation.
  • Starting Mechanism: 3-phase motors and single-phase motors have different starting mechanisms. 3-phase motors can start on their own with a simple direct-on-line (DOL) starting method, where the motor is connected directly to the power supply. In contrast, single-phase motors require additional starting mechanisms, such as capacitors or centrifugal switches, to overcome the need for a rotating magnetic field during startup.
  • Starting Torque: 3-phase motors tend to have higher starting torque compared to single-phase motors. The balanced three-phase power supply and the design of 3-phase motors allow them to produce a strong rotating magnetic field, enabling efficient starting and acceleration. Single-phase motors, on the other hand, often experience lower starting torque due to the absence of a rotating magnetic field during startup.
  • Efficiency: In terms of efficiency, 3-phase motors are generally more efficient than single-phase motors. The balanced three-phase power supply and the design of 3-phase motors result in smoother operation and reduced losses compared to single-phase motors. This higher efficiency translates to better performance and energy savings in applications where 3-phase motors are utilized.
  • Power Rating: 3-phase motors are commonly available in higher power ratings compared to single-phase motors. The ability of 3-phase motors to deliver higher power output makes them suitable for applications that require greater torque and horsepower, such as heavy-duty industrial machinery and equipment. Single-phase motors are typically used in lower power applications, such as household appliances and small tools.
  • Applications: The applications of 3-phase motors and single-phase motors also differ. 3-phase motors are widely used in industrial and commercial applications, including pumps, compressors, HVAC systems, electric vehicles, and robotics. Single-phase motors are commonly found in residential and small-scale applications, such as household appliances (e.g., refrigerators, air conditioners, and washing machines) and small tools (e.g., fans and power tools).

These are the key differences between 3-phase motors and single-phase motors. While 3-phase motors offer advantages in terms of efficiency, starting torque, and power rating, single-phase motors are suitable for smaller-scale applications and residential use. The selection of the motor type depends on the specific requirements of the application and the availability of the appropriate power supply.

3 phase motor

What factors should be considered when selecting a 3-phase motor for an application?

When selecting a 3-phase motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here's a detailed explanation of the key factors to consider:

  • Power Requirements: The power requirements of the application should be carefully evaluated. Determine the required horsepower (HP) or kilowatt (kW) rating of the motor based on the load characteristics, such as the torque and speed requirements. Consider both the continuous power requirements and any intermittent or peak power demands that the motor may experience during operation.
  • Voltage and Frequency: Verify the available voltage and frequency of the power supply in the application. Ensure that the motor's voltage and frequency ratings match the power supply to ensure compatibility and safe operation. Common voltage ratings for 3-phase motors include 208V, 230V, 460V, and 575V, while frequencies are typically 50Hz or 60Hz.
  • Motor Speed: Determine the required speed of the motor for the application. Depending on the specific requirements, you may need a motor with a fixed speed, multiple speed options, or variable speed capabilities. Consider the motor's synchronous speed, which is determined by the number of poles and the power supply frequency, and ensure it aligns with the desired operating speed.
  • Motor Enclosure: The motor enclosure should be selected based on the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, corrosive substances, and the presence of flammable or explosive materials. Common motor enclosures include open drip-proof (ODP), totally enclosed fan-cooled (TEFC), and explosion-proof enclosures.
  • Efficiency: Energy efficiency is an important consideration to minimize operating costs and environmental impact. Look for motors that meet or exceed applicable efficiency standards, such as the NEMA Premium efficiency standards in the United States or the IE efficiency classes defined by the International Electrotechnical Commission (IEC).
  • Motor Size and Mounting: Consider the physical size and mounting requirements of the motor, ensuring it fits within the available space and can be securely mounted. Check the motor's frame size, which indicates the physical dimensions and mounting compatibility, such as NEMA frame sizes in the United States or IEC frame sizes internationally.
  • Starting Method: Evaluate the starting requirements of the application. Depending on the load characteristics and the power supply capacity, you may need a motor with specific starting methods, such as direct-on-line (DOL) starting, reduced voltage starting (e.g., star-delta or autotransformer starting), or electronic soft starters. Consider the starting torque and current requirements to ensure successful motor startup.
  • Overload Protection: Determine the type of overload protection required for the motor. Overload protection devices, such as thermal overload relays or electronic motor protection relays, help prevent motor damage due to excessive heat or current overload. Select an appropriate overload protection device based on the motor's power rating and the specific application requirements.
  • Reliability and Serviceability: Consider the reliability and serviceability aspects of the motor. Look for motors from reputable manufacturers with a track record of producing reliable products. Evaluate the availability of spare parts, technical support, and service centers for maintenance and repairs. Additionally, consider factors such as motor lifespan, bearing design, and ease of access for maintenance tasks.
  • Compliance and Certifications: Ensure that the selected motor complies with relevant industry standards and certifications, such as NEMA, IEC, UL (Underwriters Laboratories), CSA (Canadian Standards Association), or specific industry requirements. Compliance with these standards ensures that the motor meets safety, performance, and quality standards.

Considering these factors when selecting a 3-phase motor helps ensure that the motor is well-suited for the application, delivers optimal performance, and operates reliably and efficiently over its lifespan.

3 phase motor

How do 3-phase motors handle variations in load and speed requirements?

3-phase motors are capable of handling variations in load and speed requirements through various control methods. Here's a detailed explanation of how they handle these variations:

  • Load Variations:
    • Inherent Torque Characteristics: 3-phase motors are designed to provide high starting torque and continuous torque output, making them suitable for a wide range of load variations. They can handle sudden changes in load without significant impact on motor performance.
    • Overload Capacity: 3-phase motors are typically designed with overload capacity to handle temporary increases in load beyond their rated capacity. This overload capacity allows the motor to withstand sudden surges in load without overheating or tripping protective devices.
    • Controlled Speed Regulation: By using control devices such as variable frequency drives (VFDs) or adjustable speed drives (ASDs), the speed and torque output of 3-phase motors can be adjusted in real-time to match the load requirements. This ensures efficient motor operation and minimizes energy wastage.
    • Motor Protection Features: 3-phase motors often incorporate protective features such as thermal overload protection and current limiters. These features help safeguard the motor against excessive heat or current, which can result from prolonged high-load conditions. They automatically intervene to protect the motor and prevent damage.
  • Speed Variations:
    • Variable Frequency Drives (VFDs): 3-phase motors can be coupled with VFDs, which allow precise control of motor speed. VFDs adjust the frequency and voltage supplied to the motor, enabling smooth and accurate speed regulation over a wide range. This flexibility in speed control makes 3-phase motors suitable for applications with varying speed requirements.
    • Adjustable Speed Drives (ASDs): Similar to VFDs, ASDs provide speed control capabilities for 3-phase motors. They allow users to adjust the motor's speed and torque output based on specific application needs. ASDs can be used in various industrial processes that require precise speed control, such as conveyor systems, pumps, and fans.
    • Pole Changing Motors: Some 3-phase motors, known as pole changing motors, offer the ability to change the number of poles within the motor. This feature allows for speed variations by altering the motor's synchronous speed. However, pole changing motors are less common compared to VFD or ASD-controlled motors.

Overall, 3-phase motors can handle variations in load and speed requirements through their inherent torque characteristics, overload capacity, and control options such as VFDs and ASDs. These features and control methods allow for efficient motor operation, precise speed regulation, and the ability to adapt to changing load conditions in various industrial applications.

China Best Sales 2 Phase NEMA23 1n. M 2n. M 3n. M Jk57HS 57bygh Electric Stepping Motor CNC Hybrid Geared Stepper Motor with Planetary Gearbox / Brake / Encoder / Controller   vacuum pump booster	China Best Sales 2 Phase NEMA23 1n. M 2n. M 3n. M Jk57HS 57bygh Electric Stepping Motor CNC Hybrid Geared Stepper Motor with Planetary Gearbox / Brake / Encoder / Controller   vacuum pump booster
editor by CX 2023-11-16