China high quality Ye2 Ye3 380V 415V 440V Premium High Efficiency Aluminum Housing Three Phase Induction AC Electric Asynchronous Motor vacuum pump brakes

Product Description

Product Description

YE3-180S-2 170V,220V,380V IP55 Copper Wire High Efficiency AC Induction Motor

General Introductions:

YE3 series super efficiency motor is our company newest design efficiency products, which in line with the second efficiency standard in the provisions of GB 186~8-2-12"the energy efficiency limit and the energy efficiency rating of small and medium-sized 3 phase asynchronous motors and IEC60034-30-2008 efficiency standard level IE4.

Advantages of this series motor: Improved structure, attractive appearance, high starting torque, high efficiency, low noise, high international protection class and insulation class, improved cooling capabilities.

YE3 series motors is suitable for almost all applications, and could be used to drive all kinds of general purpose machines such as: compressors, ventilators, pumps, etc. And can also be used in the hazardous areas with oil and chemical, steel plants. Mining industry.

Structure Declaration:

Parallel vertical radiation CHINAMFG are adopted in frame design, and the ventilating structure contains 2 separate cooling wind paths. Air external to the motor would be driven by an external fan to blow over the radiation ribs. Meanwhile, there are 4 ventilating ducts within the frame, and the inner wind path is formed by an internal fan and axiel vents on rotor sheets. In this way, the heat dissipation efficiency is improved effectively. The external fan of 2-pole motors is an one-way tube-axiel fan, whose direction of rotation is fixed, while motors with 4~8poles are provided with a two-way radial centrifugal fan, whose direction of rotation can be arbitrarily selected.

Squirrel-cage copper-bar structure or cast aluminum structure is adopted in rotor design, and the vibration is very low after high-precision dynamic balance and motor running balance tests.

The primary terminal box is mounted at the top of the frame, can be required on left or right. It also can be mounting at a 45-degree angle according to users' needs.

Product details 

Parameter 

Package  
Export fumigation wooden case

Color template

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.

Q4: What's your delivery time?

A4: Usually we produce within 25-30days after the payment came.

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

Q8: What is your max temperature of motor ?

A8: 150 -250 degree can customized with special wire 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

3 phase motor

What are the common applications of 3-phase motors?

3-phase motors find widespread use in various industrial, commercial, and residential applications. Their efficiency, reliability, and ability to provide high torque output make them suitable for a wide range of tasks. Here's a detailed explanation of the common applications of 3-phase motors:

  • Industrial Machinery: 3-phase motors are extensively used in industrial machinery, including pumps, compressors, fans, blowers, mixers, conveyors, and machine tools. These motors provide the necessary power and torque to drive heavy-duty equipment and ensure reliable operation in manufacturing facilities, factories, and processing plants.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often rely on 3-phase motors for their operation. These motors power the fans, blowers, and compressors in HVAC units, ensuring efficient air circulation, temperature control, and refrigeration in commercial and residential buildings, offices, hospitals, and shopping malls.
  • Pumps and Water Systems: 3-phase motors are commonly used in pumps for water supply systems, irrigation systems, wastewater treatment plants, and industrial pumping applications. These motors provide the necessary power to move water, fluids, or other liquids efficiently and reliably.
  • Electric Vehicles: Electric vehicles (EVs) and hybrid electric vehicles (HEVs) utilize 3-phase motors for propulsion. These motors provide the necessary torque and power to drive the vehicle's wheels, offering efficient and eco-friendly transportation solutions.
  • Industrial Robotics: 3-phase motors play a crucial role in industrial robotics, where precise and dynamic motion control is required. These motors provide the necessary power and torque to actuate the robotic arms, joints, and end-effectors, enabling precise movement and manipulation in manufacturing, assembly, and automation processes.
  • Machine Tools: Machine tools, such as lathes, milling machines, grinders, and CNC machines, rely on 3-phase motors for their operation. These motors provide the rotational power and control required for cutting, shaping, and machining various materials in metalworking, woodworking, and fabrication industries.
  • Oil and Gas Industry: The oil and gas industry extensively employs 3-phase motors in various applications, including pumps for oil extraction and transportation, compressors for gas compression, and fans for ventilation in refineries and petrochemical plants.
  • Renewable Energy Systems: Wind turbines and solar tracking systems often utilize 3-phase motors. These motors enable efficient conversion of wind or solar energy into electrical energy, contributing to the generation of clean and sustainable power.
  • Food Processing and Packaging: 3-phase motors are commonly found in food processing and packaging equipment, such as mixers, grinders, slicers, conveyors, and filling machines. These motors provide the power and control required for efficient and hygienic processing, packaging, and handling of food products.

These are just a few examples of the common applications of 3-phase motors. Their versatility, reliability, and ability to deliver high torque output make them suitable for a wide range of tasks across various industries and sectors.

3 phase motor

What factors should be considered when selecting a 3-phase motor for an application?

When selecting a 3-phase motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here's a detailed explanation of the key factors to consider:

  • Power Requirements: The power requirements of the application should be carefully evaluated. Determine the required horsepower (HP) or kilowatt (kW) rating of the motor based on the load characteristics, such as the torque and speed requirements. Consider both the continuous power requirements and any intermittent or peak power demands that the motor may experience during operation.
  • Voltage and Frequency: Verify the available voltage and frequency of the power supply in the application. Ensure that the motor's voltage and frequency ratings match the power supply to ensure compatibility and safe operation. Common voltage ratings for 3-phase motors include 208V, 230V, 460V, and 575V, while frequencies are typically 50Hz or 60Hz.
  • Motor Speed: Determine the required speed of the motor for the application. Depending on the specific requirements, you may need a motor with a fixed speed, multiple speed options, or variable speed capabilities. Consider the motor's synchronous speed, which is determined by the number of poles and the power supply frequency, and ensure it aligns with the desired operating speed.
  • Motor Enclosure: The motor enclosure should be selected based on the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, corrosive substances, and the presence of flammable or explosive materials. Common motor enclosures include open drip-proof (ODP), totally enclosed fan-cooled (TEFC), and explosion-proof enclosures.
  • Efficiency: Energy efficiency is an important consideration to minimize operating costs and environmental impact. Look for motors that meet or exceed applicable efficiency standards, such as the NEMA Premium efficiency standards in the United States or the IE efficiency classes defined by the International Electrotechnical Commission (IEC).
  • Motor Size and Mounting: Consider the physical size and mounting requirements of the motor, ensuring it fits within the available space and can be securely mounted. Check the motor's frame size, which indicates the physical dimensions and mounting compatibility, such as NEMA frame sizes in the United States or IEC frame sizes internationally.
  • Starting Method: Evaluate the starting requirements of the application. Depending on the load characteristics and the power supply capacity, you may need a motor with specific starting methods, such as direct-on-line (DOL) starting, reduced voltage starting (e.g., star-delta or autotransformer starting), or electronic soft starters. Consider the starting torque and current requirements to ensure successful motor startup.
  • Overload Protection: Determine the type of overload protection required for the motor. Overload protection devices, such as thermal overload relays or electronic motor protection relays, help prevent motor damage due to excessive heat or current overload. Select an appropriate overload protection device based on the motor's power rating and the specific application requirements.
  • Reliability and Serviceability: Consider the reliability and serviceability aspects of the motor. Look for motors from reputable manufacturers with a track record of producing reliable products. Evaluate the availability of spare parts, technical support, and service centers for maintenance and repairs. Additionally, consider factors such as motor lifespan, bearing design, and ease of access for maintenance tasks.
  • Compliance and Certifications: Ensure that the selected motor complies with relevant industry standards and certifications, such as NEMA, IEC, UL (Underwriters Laboratories), CSA (Canadian Standards Association), or specific industry requirements. Compliance with these standards ensures that the motor meets safety, performance, and quality standards.

Considering these factors when selecting a 3-phase motor helps ensure that the motor is well-suited for the application, delivers optimal performance, and operates reliably and efficiently over its lifespan.

3 phase motor

Can 3-phase motors be integrated with advanced control systems and automation?

Yes, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies. Here's a detailed explanation of their compatibility and integration capabilities:

  • Variable Frequency Drives (VFDs):
    • 3-phase motors can be coupled with VFDs, which are advanced control devices that provide precise control over motor speed and torque. VFDs convert the incoming AC power into DC and then generate variable voltage and frequency outputs to the motor. This allows for smooth and accurate speed regulation, making 3-phase motors suitable for applications requiring speed control, such as conveyor systems, pumps, and fans.
    • VFDs can be integrated into automation systems through various communication protocols such as Modbus, Profibus, or Ethernet. This enables real-time monitoring, control, and coordination of motor performance within the overall automation network.
  • Programmable Logic Controllers (PLCs):
    • 3-phase motors can be integrated with PLCs, which are industrial digital computers used for automation and control purposes. PLCs can be programmed to monitor and control the operation of 3-phase motors based on specific conditions, inputs, and logic sequences.
    • PLCs can receive feedback signals from sensors or other devices to monitor motor performance, temperature, vibration, and other relevant parameters. Based on this feedback, the PLC can initiate control actions or activate protective functions to ensure optimal motor operation.
    • Integration with PLCs allows for centralized control, data logging, and the ability to interface with other automation devices and systems. This facilitates seamless integration of 3-phase motors into larger automated processes or production lines.
  • Industrial Communication Protocols:
    • 3-phase motors can be integrated into advanced control systems using various industrial communication protocols, such as Modbus, Profibus, DeviceNet, EtherCAT, or Profinet. These protocols enable data exchange and communication between the motor and other devices or systems within the automation network.
    • By utilizing these communication protocols, 3-phase motors can provide real-time feedback on parameters such as motor speed, torque, temperature, and operating conditions. This data can be used for condition monitoring, predictive maintenance, and optimization of motor performance.
    • Integration with industrial communication protocols allows for seamless connectivity, interoperability, and coordination between 3-phase motors and other automation components, such as sensors, actuators, HMIs (Human-Machine Interfaces), and supervisory control systems.
  • Remote Monitoring and Control:
    • The integration of 3-phase motors with advanced control systems and automation technologies enables remote monitoring and control capabilities. Motor parameters and performance data can be accessed and monitored from a central control room or through web-based interfaces.
    • Remote monitoring allows for real-time status updates, fault diagnostics, and performance optimization of 3-phase motors. It enables proactive maintenance and troubleshooting, leading to increased uptime and improved efficiency.
    • Advanced control systems and automation technologies also facilitate remote control of 3-phase motors, allowing operators or system administrators to adjust motor settings, initiate start/stop commands, or modify control parameters from a centralized location.

Overall, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies, such as VFDs, PLCs, industrial communication protocols, and remote monitoring/control capabilities. This integration enables precise control, real-time monitoring, and coordination of motor performance within automated processes and systems, leading to enhanced efficiency, productivity, and flexibility in industrial applications.

China high quality Ye2 Ye3 380V 415V 440V Premium High Efficiency Aluminum Housing Three Phase Induction AC Electric Asynchronous Motor   vacuum pump brakesChina high quality Ye2 Ye3 380V 415V 440V Premium High Efficiency Aluminum Housing Three Phase Induction AC Electric Asynchronous Motor   vacuum pump brakes
editor by CX 2023-12-28